
Constraint Library Reference

Constraints in NDDL
Temporal Constraints1.
Comparison Constraints2.
Calculation Constraints3.
Set Constraints4.
Conditional and Test Constraints5.
Object Hierarchy Constraints6.
Miscellaneous Constraints7.
Deprecated Constraint Names8.

1.

Constraints in NDDL
The table that follows overviews the built-in constraints, available in NDDL or through the programmatic API.
Note that:

Many constraints can have a variable number of parameters; we use letters (a,b,etc) to indicate required
parameters, and '...' to indicate that subsequent parameters are optional.

•

In the Variable Types column, we describe restrictions on the variable types as follows:
Numeric: Type is int, float, bool, or some user-defined numeric type. For bool, the usual C/C++
convention is used; 0 <=> false, non-zero => true, and true => 1.

♦

Numeric Intervals: Same as Numeric except that eumerated types (enumerated numeric types are
possible) are disallowed.

♦

Comparable: Comparable variables must all be numeric, or must all be the same type.♦

•

We use lb and ub to refer to the lower and upper bounds, respectively, of a variable's domain.•
Maintainance of constraints means that for any value in the domain of any variable, there exists values in
the domains of all other variables such that the desired property holds. For example, eq(a,b) means that for
any x in the domain of a, there is a y in the domain of b such that x == y (ie. it restricts the domains of a
and b to be the intersection of those domains).

•

Temporal Constraints

Note that temporal constraints will in most cases provide stronger propagation than similar constraints the follow
since the Temporal Network will be used. For example precedes(a,b) and leq(a,b) will enforce the same semantics;
however, for the former, the Temporal Network will be able to do more propagation with other temporal constraints
that involve variables a,b and detect conflicts earlier.

Constraint Syntax Description Variable Types
temporalDistance temporalDistance(a, b, c) a+b=c Numeric interval
precedes precedes(a,b) a <= b Numeric interval
concurrent concurrent(a,b) a == b Numeric interval
In addition to the three basic temporal constraints, there are built-in temporal constraints for all Allen Relations
(Allen, 1983) among tokens. Before listing those constraints, some distinctions are in order:

Like most constraints on this page, the three temporal constraints above are applied to variables.•
The temporal constraints below are applied to Tokens (and implicitly invoke constraints between the start
and end member variables of those Tokens).

•

Constraints in NDDL 1

The Allen temporal constraints here should not be confused with the Allen operators (with the same names,
but different syntax) described in the NDDL Reference (those Allen operators are different beast altogether
because they can generate slave tokens etc.).

•

Constraint Syntax Implied Constraints
before a before b precedes(a.end, b.start);
after a after b precedes(b.end, a.start);
meets a meets b concurrent(a.end, b.start);
met_by a met_by b concurrent(a.start, b.end);
equal or equals a equal b concurrent(a.start, b.start); concurrent(a.end, b.end);
contains a contains b precedes(a.start, b.start); precedes(b.end, a.end);
contained_by a contained_by b precedes(b.start, a.start); precedes(a.end, b.end);
paralleled_by a paralleled_by b precedes(b.start, a.start); precedes(b.end, a.end);
parallels a parallels b precedes(a.start, b.start); precedes(a.end, b.end);
starts a starts b concurrent(a.start, b.start);
ends a ends b concurrent(a.end, b.end);
ends_after a ends_after b precedes(b.end, a.end);
ends_before a ends_before b precedes(a.end, b.end);
ends_after_start a ends_after_start b precedes(b.start, a.end);
starts_before_end a starts_before_end b precedes(a.start, b.end);
starts_during a starts_during b precedes(b.start, a.start); precedes(a.start, b.end);
contains_start a contains_start b precedes(a.start, b.start); precedes(b.start, a.end);
ends_during a ends_during b precedes(b.start, a.end); precedes(a.end, b.end);
contains_end a contains_end b precedes(a.start, b.end); precedes(b.end, a.end);
starts_after a starts_after b precedes(b.start, a.start);
starts_before a starts_before b precedes(a.start, b.start);

Comparison Constraints

These constraints enforce <, >, =, !=, etc.

Constraint Syntax Description Variable Types
eq eq(a,b,...) a == b == ... Comparable
neq neq(a,b) a != b Comparable
lessThan lessThan(a,b) a < b Numeric
leq leq(a,b) a <= b Numeric
withinBounds withinBounds(a,b,c) a.lb >= b.lb, a.ub <= c.ub and b <= c Comparable

Calculation Constraints

These constraints enforce that one variable (usually a) is constrained by a calculation done on the remaining
variables.

Constraint Syntax Description

Temporal Constraints 2

Variable
Types

distanceSquares distanceSquares(a,b,c) c = sqrt(a + b) if a and b are singleton Numeric
intervals

calcDistance calcDistance(a,b,c,d,e) a is the Euclidean distance between points
(b,c) and (d,e)

Numeric
intervals

sin sin(a,b) a = sin(b) Numeric
intervals

addEq addEq(a,b,c) a+b=c Numeric
intervals

mulEq mulEq(a,b,c) a*b=c Numeric
intervals

addMulEq addMulEq(a,b,c,d) a + (b*c)=d Numeric
intervals

GreaterThanSum GreaterThanSum(a,b,c,...) a > b + c + ... Numeric
LessThanSum LessThanSum(a,b,c...) a < b + c + ... Numeric
GreaterOrEqThanSum GreaterOrEqThanSum(a,b,c,...) a >= b + c + ... Numeric
LessOrEqThanSum LessOrEqThanSum(a,b,c,...) a <= b + c + ... Numeric

allDiff allDiff(a,b,...) Restrict all domains so the intersection of
any pair of domains is empty Comparable

EqualMaximum EqualMax(a,b,...) a = max(b,...) Numeric
EqualMinimum EqualMin(a,b,...) a = min(b,...) Numeric

EqualProduct EqualProduct(a,b,c) a = b * c Numeric
Intervals

EqualSum EqualSum(a,b,c) a = b + c Numeric
Intervals

CountZeros CountZeros(a,b,...) a is the count of the rest that can be zero Numeric

CountNonZeros CountNonZeros(a,b,...) a is the count of the rest that can be
non-zero Numeric

diffSquare diffSquare(a,b,c) c = (a - b)2 if a and b are singleton Numeric
intervals

card card(a,b,...) a must be greater than or equal the count
of the other variables that are true Numeric

Set Constraints

These constraints are likely to be used for set comparisons etc. Note, however, that many of the other constraints
listed on this page could be used for sets (ie Comparable variables) just as these constraints could be applied to
numeric domains as well.

Constraint Syntax Description Variable Types
subsetOf subsetOf(a,b) a is a subset of b Comparable

memberImply memberImply(a,b,c,d) If a is subset of b, then require that c is
subset of d

a and b comparable, c and d
comparable

Lock Lock(a,b) Comparable

Calculation Constraints 3

Restrict a's domain to be contained in b's
domain

Conditional and Test Constraints

Conditional Constraints: The value of one variable (usually a) determines if a constraint among
remaining variable must be enforced.

•

Test Constraints: The value of one variable (usually a) can flip the constraint enforced among remaining
variables.

•

Constraint Syntax Description Variable Types

condAllDiff condAllDiff(a,b,c,...)
If a, then b != c && b != d && c != d && ...
If not a, then !(b != c && b != d && c != d
&& ...)

a bool, the rest
comparable

condEq condEq(a,b,c,...)
If a, then b == c && b == d && c == d && ...
If not a, then !(b == c && b == d && c == d
&& ...)

a bool, the rest
comparable

CondEqualSum condEqualSum(a,b,c,d,...) If a is true, then b = c + d ...
If a is false, b != c + d ...

Numeric
intervals

testEQ testEQ(a,b,c) If a, then b == c
If not a, then b != c

a numeric, b and
c comparable

testLEQ testLEQ(a,b,c) If a, then b <= c
If not a, then b > c Numeric

TestLessThan TestLessThan(a,b,c) If a, then b < c
If not a, then b >= c Numeric

Object Hierarchy Constraints

NOTE: Unlike most constraints on this page, which are imposed on variables, these constraints are imposed on
objects and tokens.

These constraints are used to assert which object one or more tokens is contained by. Most often, the
commonAncestor constraint is used to subgoal across timelines which must share a contained object in common.

Constraint Syntax Description Variable Types

commonAncestor commonAncestor(a,b,c) a and b must be contained by the same object in
c (or by c itself)

a, b, and c are all
objects

hasAncestor hasAncestor(a,b) a must be contained by some object in b a and b are objects,
Here's a snippet of code showing the use of the commonAncestor constraint:

Instrument::TakeSample{
 contained_by(Navigator.At at);
 eq(at.location, rock);
 Rover rovers;
 commonAncestor(at.object, this.object, rovers);

This ensures that the Navigator object used for the At token and the Instrument object used for the TakeSample
token token are both contained in the same Rover (you wouldn't want one Rover to be in the right place and another
to take the sample!).

Set Constraints 4

Miscellaneous Constraints

Constraint Syntax Description Variable
Types

UNARY NA

Restrict a variable's domain: given a variable and a domain, intersect
them.
Note that this constraint is only available internally and not exposed in
nddl.

Anything

neg neg(a,b) a >=0, b<=0, a+b==0 Numeric
intervals

or or(a,b,...) At least one of the variables must be true Numeric
absVal absVal(a,b) a.lb >= 0, a.ub = max(abs(b.lb), abs(b.ub)), b.lb >= -a.lb, b.ub <= a.ub Numeric

Deprecated Constraint Names

Historically, other names have been used for the above constraints. The following lists alternatives that are now
deprecated:

Constraint Kept Deprecated Equivalents
eq Equal, asame, fasame
addEq AddEqual, addeq
mulEq multEq, MultEqual
addMulEq AddMultEqual, addmuleq
allDiff AllDiff, adiff, fadiff, fneq
card Cardinality
condEq CondAllSame, condeq, condasame
CountNonZeros cardeq
EqualMaximum fallmax
EqualMinimum fallmin
EqualProduct product
EqualSum sum
leq LessThanEqual
lessThan LessThan, lt
LessOrEqThanSum leqsum
TestLessThan condlt
withinBounds WithinBounds
testEQ TestEqual
testLEQ condleq
TestLessThan condlt
memberImply MemberImply
neq NotEqual
or for, Or
subsetOf SubsetOf, singleton

Miscellaneous Constraints 5

temporalDistance temporaldistance

Deprecated Constraint Names 6

	tmpEu19mMtracpdf

